

USING RISC-V TO DEFINE SOCS IN SOFTWARE

WHITEPAPER

 ©2022 XMOS Ltd.

 ©2022 XMOS Ltd.

IN THIS DOCUMENT

u Introduction: XMOS processors
u Adoption of RIS-V
u Real-time guarantees
u Hardware vs software

XMOS has moved to a RISC-V compatible instruction set for its latest processor that will be
available for sampling in 2023. In this whitepaper we discuss how this processor and its RISC-V
compatible architecture can be used.

INTRODUCTION: XMOS PROCESSORS

XMOS prides itself on designing and selling processors that can fully implement the digital
requirements of modern embedded systems. Specifically:

§ XMOS xcore® processors are highly flexible like an FPGA and can target complex and
highly varied designs. Unlike an FPGA, this is all expressed in software.

§ XMOS processors are high performance like a DSP or an AI accelerator. Unlike DSP

and AI accelerators, XMOS processors offer a single, unified processor, programmed
through a single flow, where data does not need to be moved to take advantage of
optimisations.

§ XMOS processors are scalable (much like high performance computers), enabling

designers to gradually extend their design without going back to square one. This allows
them to easily create spin-off products with extra capabilities.

§ XMOS processors are affordable, easy to use, and low energy, much like a

microcontroller.

In that capacity, XMOS processors can often absorb elements of the design that would
traditionally require different classes of components. Where traditionally one may use a
microcontroller to control the design, and a DSP to do the signal processing, and maybe a
CPLD to interface to a complex digital interface, XMOS processors can do these three tasks in
a single device using a single, unified software-based workflow.

 ©2022 XMOS Ltd.

ADOPTION OF RISC-V

For its latest generation of xcore, XMOS has adopted compatibility with the RISC-V
architecture. The centrepiece of all XMOS processors is that the system is programmed using a
collection of hardware threads. Individual parts of the system are programmed using one or
more threads each, and all threads are composited together into a single system that
implements the full embedded system.

With the adoption of RISC-V, these threads become RISC-V HARTs; which stands for
“HARdware Threads”. Each HART can be seen as its own individual execution engine that is
running in parallel with all the other HARTs.

HARTs enable system integrators to customise the xcore processor for their particular solution.
For example, in the case of an industrial robot, a few HARTs may be dedicated to implementing
a highly efficient PWM generator. Another designer can use the same chip in consumer
electronics where these HARTs are being used to interface and mix various audio signals.

Because both the PWM and Audio interfaces are implemented in software, there is unrivalled
opportunity for the system designer to customise the software and put their own unique IP at the
core of their system; they do not have to work around limitations of any hardware blocks.

Each HART is a RISC-V compatible machine, with custom extensions to enable fast
synchronisation and communication between HARTs and between the software and I/O signals.
The core instruction set is RV32IM: a 32-bit RISC-V with 31 registers per HART, and the M
extension for multiplies and divisions. All control code can use this instruction set, and indeed
the toolchain is based on the LLVM RISC-V compiler, assembler, and linker. Assembly
programs written for the RV32IM can run without any modification.

REAL-TIME GUARANTEES

The architecture underneath the threads guarantees that each HART issues an instruction
every thread-cycle. Threads follow each other through a shared pipeline, so with eight active
threads, an instruction will be issued every eight clock cycle. When clocked at 600 MHz, that
guarantees an issue rate of 75 MHz for each HART. Because of this guarantee, each HART can
be programmed independently, tested independently, and have its real-time properties
characterised and “signed-off” independently. Based on this foundation, software can be
composited together simply by running different real-time functions on different HARTs.

This means that a collection of RISC-V HARTs replaces a large swath of logic that would
normally require dedicated hardware, for example, a USB MAC. Whereas a hardware USB
MAC would have a fixed number of endpoints with fixed functionality and fixed buffering, the
software-based MAC will only have the buffering and endpoints that the endpoint requires.

RISC-V HARTs use a programming model that is known as concurrent real-time programming.
We show an example of this in Figure 1 that shows how a single xcore processor can execute

 ©2022 XMOS Ltd.

eight threads simultaneously; each HART can be seen as an individual processor with a
guaranteed real-time execution rate. The device contains two processors, for a total of 16
threads that execute simultaneously. Each instruction that can execute will execute within a
known amount of time, and hence the programmer can predict whether programs will meet
timing deadlines or not.

Figure 1

The beauty of this model is that timing prediction is entirely self-contained to the task. As an
example, consider the PWM task mentioned before: once the program has been written to
execute on, for example, a 75 MHz RISCV HART, then regardless of modifications to other
threads, this PWM thread will always meet its timing.

HARDWARE VS SOFTWARE

There are many why a software implementation is preferable over a hardware interface:

1. Part selection. In a traditional approach, the designer will select a part with the
appropriate interfaces; any interfaces that come up at a later stage would require a
different part to be selected; possibly from a different family or supplier, or additional
components on the bill-of-materials.

With a software implementation, part selection only involves selecting the size of the
part required, with a trade-off between capability and price.

2. Adaptability. Hardware implementations have fixed and therefore limited
functionality. In a software implementation, functionality can be adapted to allow for
novel or evolving aspects to be included. This includes dealing with idiosyncrasies of
specific devices, or indeed custom extensions to protocols.

3. Optimisation. Hardware-defined implementations have a fixed and prescribed
functionality, with choices made by the hardware designer typically years previously.

Scalar,
FP

Vector
Control

and
Comms
Pipeline

512 kByte
level 1

memory
no latency

RiscV Thread 1

RiscV Thread 2

RiscV Thread 3

RiscV Thread 4

RiscV Thread 5

RiscV Thread 6

RiscV Thread 7

RiscV Thread 8
Level 2
Buffer

64 GPIO pinsScheduler

2 MByte
level 2

memory

Switching
Fabric

OTP

Scalar,
FP

Vector
Control

and
Comms
Pipeline

512 kByte
level 1

memory
no latency

RiscV Thread 1

RiscV Thread 2

RiscV Thread 3

RiscV Thread 4

RiscV Thread 5

RiscV Thread 6

RiscV Thread 7

RiscV Thread 8
Level 2
Buffer

64 GPIO pinsScheduler

2 MByte
level 2

memory

OTP

Scalar,
FP

Vector
Control

and
Comms
Pipeline

512 kByte
level 1

memory
no latency

RiscV Thread 1

RiscV Thread 2

RiscV Thread 3

RiscV Thread 4

RiscV Thread 5

RiscV Thread 6

RiscV Thread 7

RiscV Thread 8
Level 2
Buffer

64 GPIO pins SchedulerOTP
Switching

Fabric

Hi speed
USB PHY

MIPI DPHY
RXJTAG Prim

PLLPoR Sec
PLL

 ©2022 XMOS Ltd.

A software-defined implementation can be optimised to the problem at hand. For
example, a software defined interface may be optimised to minimise latency,
minimising buffering and jitter in the data.

The third reason is remarkably important as many standard blocks dealing with interfaces like
UARTs, I2S, MII, USB, MIPI, and other standards must have built-in buffers to decouple the
interface, and those buffers are, in many cases, both unwanted and expensive as they add
delay to the algorithm and area to the silicon.

Flexible hardware can enable greater product differentiation, allowing developers and product
managers to deliver distinguishable value to their customers. Concurrent real-time programming
allows very tight timing requirements to be guaranteed, with embedded processors such as the
XMOS xcore providing silicon and development tools required to take advantage of this
programming method.

AN EXAMPLE: NUMBER PLATE RECOGNITION

As a worked example, let’s look at how something like number plate recognition works on
xcore. Number plate recognition typically comprises a camera, an image processing pipeline,
two or more neural networks, and an interface to a back-bone.

• The MIPI DMA task is a very short C function that places lines of the image into memory.
• The debayering and subsampling tasks are also written in C, but call library functions

on-the-fly to perform the DSP necessary to perform the colour conversion and image
subsampling.

• The two neural network tasks are both compiled down directly from their learned
models. Given the trained model, the model is quantised, and then optimised for xcore.
The optimised model is then compiled to code that invokes the kernels that are
optimised for xcore and compiled using the standard LLVM C-compiler. The neural
networks are compiled to parallelise onto 4 and 5 threads respectively.

• The Control and SPI tasks are written in C.

As these are all software decisions, the system designer may choose to shuffle resources
between the tasks; enabling trade-offs to be made between the speeds and performances of all
of the components. It may seem wasteful to dedicate a hardware-thread to be a MIPI DMA
engine; but it saves having dedicated DMA engines that may be unused or inappropriate. It is
also important to note that this DMA engine is fully programmable, and as such can interpret
CSI-2 headers in the process of performing the DMA operation.

 ©2022 XMOS Ltd.

It is worth noting that the whole flow is in software, and in the end the LLVM RISCV C-compiler
is used to create a single image. It is this single flow that enables quick re-designs and trade-
offs between the various components.

For further information or to discuss your requirements, please visit xmos.ai or contact
sales@xmos.com.

RiscV Thread 1

RiscV Thread 2

RiscV Thread 3

RiscV Thread 4

RiscV Thread 5

RiscV Thread 6

RiscV Thread 7

RiscV Thread 8

RiscV Thread 1

RiscV Thread 2

RiscV Thread 3

RiscV Thread 4

RiscV Thread 5

RiscV Thread 6

RiscV Thread 7

RiscV Thread 8

RiscV Thread 1

RiscV Thread 2

RiscV Thread 3

RiscV Thread 4

RiscV Thread 5

RiscV Thread 6

RiscV Thread 7

RiscV Thread 8

MIPI DMA task

Bayer to YUV conversion

Subsampling and cropping

Number plate extraction
neural network

Control (with I2C library)

Character recognition
neural network

SPI communication

MIPI
camera
with I2C
control

Backbone
(eg, 3G
modem)

 ©2022 XMOS Ltd.

Copyright ã 2022, All Rights Reserved.

XMOS Ltd. Is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it to you “AS
IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. Makes no
representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and
again, shall have no liability in relation to any such claims.

