Page Image

Press / Media

Is a single-chip SOC processor right for your embedded project? (Part 2)

Target applications for SOCs:

Digital signage systems are optimized to provide immersive HD visual experiences across multiple displays for a wide range of environments such as supermarkets, shopping centers, and transportation hubs. These systems require the high-speed delivery of HD multimedia content, typically in a small form factor design. Low power consumption is critical for these types of systems, as it helps designers alleviate thermal dissipation challenges within the system.

Thin clients rely heavily upon HD video and graphics, and are dependent upon improved data transfer rates in order to create enhanced Internet experiences. Industrial control and automation systems, from headless control systems to complex display systems and human-machine interfaces, also depend upon high-performance, low-power processor architectures. Industrial control and automation applications typically require software to be supported across a broad spectrum of devices. The single-chip SOC is an attractive option for this application domain due to its support for open standards such as the Open Computing Language (OpenCL).

Another key enabler for heterogeneous computing is a system’s ability to operate in multivendor environments. OpenCL, which enables parallel programming of GPUs, CPUs, and other processors, provides a uniform programming environment for developers to write efficient, portable code across different hardware and software platforms. With OpenCL, programmers can preserve their expensive source-code investments, re-using code across platforms.

High-definition graphics:

In order to provide visually stunning graphics for a broad range of applications, GPUs often include hardware acceleration capabilities. The Unified Video Decoder, which is included in advanced GPUs from AMD, decodes H.264, VC-1, and MPEG-4 video formats natively at the processor level. AMD’s Video Codec Engine, included in the AMD G-Series SOC’s integrated GPU, encodes videos using H.264 compression with full, custom hardware acceleration. Dedicated hardware acceleration engines for video decode and encode are particularly beneficial for multimedia-intensive applications such as digital gaming and digital signage.

Standard API support is also an important consideration for HD video applications, as it enables developers to expand their software development options. The OpenGL API (the latest version is OpenGL 4.3) enables 2D and 3D graphics and is often used for digital gaming applications. The DirectX API (the latest version is DirectX 11.1), enables support for multimedia-related tasks within Microsoft platforms, delivers 2D and 3D rendering, GPU compute, and even power efficiency, and is especially useful for games and video, among other application areas.

Electronic gaming systems, which often feature vibrant 3D graphics displayed across multiple monitors, can benefit from the significant performance boost enabled with video- and graphics-optimized SOC processors. SOC processors that feature DirectX support with a scalable, x86-based architecture can help system designers meet aggressive performance targets.

Small footprint

With higher integration (including the I/O controller), the single-chip SOC occupies less real estate than comparably-performing CPU+GPU chipsets. As mentioned earlier, a single-chip SOC can save more than 30% space compared to a two-chip solution, requiring fewer board layers. The performance-per-watt profiles provided by SOCs can also enable developers to eliminate mechanical fans from their designs in many cases. With fewer moving parts, there is less risk of failure and a significant reduction in noise.

The small footprint of a single-chip SOC makes it ideal for numerous application areas, improving not only power consumption but also price/performance. The small footprint and power savings also make single-chip SOCs ideal candidates for smaller single-board computer (SBC) and computer-on-module (COM) designs, including PC/104, Pico-ITX, Q-Seven, nanoEXTexpress, and Mobile ITX.

Summary

Single-chip SOC solutions, such as AMD Embedded G-Series SOCs, are smaller in size, offer dramatic performance improvements, and are more energy efficient than most CPU+GPU chipsets. With a high level of integration, SOC processors can save designers valuable time and cost while helping them achieve advanced system capabilities.

David Beck is Director of Technical Marketing at Symmetry Electronics.